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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Outline of Section 1

e Basic Properties and Characterization

@ 1st and 2nd moment function; ergodicity

@ correlation matrix; power-spectrum density

e The Rational Transfer Function Model
o ARMA, AR, MA processes
@ Wold Decomposition Theorem
o ARMA, AR, and MA models and properties
@ asymptotic stationarity of AR process

Readings for §1.1: Haykin 4th Ed. 1.1-1.3, 1.12, 1.14;
see also Hayes 3.3, 3.4, and background reviews 2.2, 2.3, 3.2
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Stochastic Processes

@ To describe the time evolution of a statistical phenomenon
according to probabilistic laws.

Example random processes: speech signals, image, noise,
temperature and other spatial /temporal measurements, etc.
@ Discrete-time Stochastic Process {u[n]}

e Focus on the stochastic process that is defined / observed at
discrete and uniformly spaced instants of time

e View it as an ordered sequence of random variables that are
related in some statistical way:
{...u[n—=M],...;uln,uln+1],...}

e A random process is not just a single function of time; it may
have an infinite number of different realizations
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Parametric Signal Modeling

@ A general way to completely characterize a random process is by
joint probability density functions for all possible subsets of the
r.v. in it

Probability of {u[n1], u[nz], ..., u[nk]}

@ Question: How to use only a few parameters to describe a
process?

Determine a model and then the model parameters

= This part of the course studies the signal modeling
(including models, applicable conditions, how to determine the
parameters, etc)
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1 Discrete-time Stochastic Processes q q s
Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

(1) Partial Characterization by 1st and 2nd moments

It is often difficult to determine and efficiently describe the
joint p.d.f. for a general random process.

As a compromise, we consider partial characterization of the
process by specifying its 1st and 2nd moments.

Consider a stochastic time series {u[n]}, where u[n], u[n —1],...

may be complex valued. We define the following functions:

e mean-value function: m[n]| =E[u[n]] , n€ Z
e autocorrelation function: r(n,n — k) = E [u[n]u*[n — K]]
@ autocovariance function:

c(n,n— k) = E[(uln] — m[n])(u[n — k] — m[n — K])"]

Without loss of generality, we often consider zero-men random process
E [u[n]] = 0 Vn, since we can always subtract the mean in preprocessing.

Now the autocorrelation and autocovariance functions become identical.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Wide-Sense Stationary (w.s.s.)

Wide-Sense Stationarity

If Yn, m[n] = m and r(n,n — k) = r(k) (or c(n,n— k) = c(k)),
then the sequence u[n] is said to be wide-sense stationary (w.s.s.),
or also called stationary to the second order.

@ The strict stationarity requires the entire statistical property
(characterized by joint probability density or mass function) to
be invariant to time shifts.

@ The partial characterization using 1st and 2nd moments offers
two important advantages:

@ reflect practical measurements;

@ well suited for linear operations of random processes
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

(2) Ensemble Average vs. Time Average

o Statistical expectation E(-) as an ensemble average: take
average across (different realizations of) the process

@ Time-average: take average along the process.

This is what we can rather easily measure from one realization
of the random process.

Question: Are these two average the same?

Answer: No in general. (Examples/discussions from ENEE620.)

Consider two special cases of correlations between signal samples:
Q uln,uln—-1],--- iid.

Q u[n]=u[n—1]=--- (i.e. all samples are exact copies)
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Mean Ergodicity

For a w.s.s. process, we may use the time average

N 1 V-1
m(N) - N Zn:O u[n]

to estimate the mean m.

e M(N) is an unbiased estimator of the mean of the process.

~E[m(N)] =m VN.

e Question: How much does M(N) from one observation deviate from
the true mean?

Mean Ergodic

A w.s.s. process {u[n]} is mean ergodic in the mean square error
sense if limy_,o0 E [|[m — m(N)[?] =0
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Mean Ergodicity

A w.s.s. process {u[n]} is mean ergodic in the mean square error
sense if limy_,o0 E [|[m — Mm(N)[?] =0

Question: under what condition will this be satisfied?

= (nece.& suff) limy o0 & SN2y (1— Mhe(e) =0

Mean ergodicity suggests that c(¢) is asymptotically decaying s.t.
{u[n]} is asymptotically uncorrelated.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Correlation Ergodicity

Similarly, let the autocorrelation estimator be

1 N-1
Pk N) = > uln]ut[n— K]
n=0

The w.s.s. process {u[n]} is said to be correlation ergodic in the
MSE sense if the mean squared difference between r(k) and
?(k, N) approaches zero as N — oc.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

(3) Correlation Matrix

Given an observation vector u[n] of a w.s.s. process, the
correlation matrix R is defined as R £ E [u[n]u"[n]]

where H denotes Hermitian transposition (i.e., conjugate transpose).

Z%Z]i 1 Each entry in R is
uln] = | , [Rij = Efuln—ilu*[n—j]] = r( =)
.u[n—/\/l—i—l] O0=ij=M-1)
r(0) r(l) - oo r(M=1)
r(—1) r(0) r(1) :
Thus R =
r(=M+2) r(0) (1)
r(—M+1) r(0)
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Properties of R

© R is Hermitian, i.e., R" =R

Proof

@ R is Toeplitz.

A matrix is said to be Toeplitz if all elements in the main diagonal are
identical, and the elements in any other diagonal parallel to the main
diagonal are identical.

R Toeplitz < the w.s.s. property.
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1 Discrete-time Stochastic Processes q q s
Appendix: Detailed Derivations 1.1 Basic Properties and Characterization

Properties of R

© R is non-negative definite , i.e., xHRx >0, Vx
Proof

e eigenvalues of a Hermitian matrix are real.

(similar relation in FT: real in one domain ~ conjugate symmetric in
the other)

e eigenvalues of a non-negative definite matrix are non-negative.
Proof
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Properties of R

uln— M+ 1]

Q uBn 2 : , i.e., reversely ordering u[n],
uln—1]
uln]

then the corresponding correlation matrix becomes

r(0) r(=1) - r(—M+1)
E [uB[n](uB[n])"] = r(:l) r(0) ) —RT
,(M-_ 1) e e ,(-0)
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Properties of R

@ Recursive relations: correlation matrix for (M + 1) x 1 u[n]:

Mo) - - -
%2y f‘*(l)\ ~
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

(4) Example-1: Complex Sinusoidal Signal

x[n] = Aexp[j(2rfon + ¢)] where A and fy are real constant, ¢ ~
uniform distribution over [0, 27) (i.e., random phase)

Relx ]

=0
E [x[n]] =? ,E,

E [x[n]x*[n — k]] =?

Is x[n] is w.s.s.7
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Example-2: Complex Sinusoidal Signal with Noise

Let y[n] = x[n] + w[n] where w[n] is white Gaussian noise
uncorrelated to x[n] , w[n] ~ N(0, o)

o2 k=0

Note: for white noise, E [w[n]w*[n — k]] = {0

ry(k) = Ely[nly*[n — k]] =7
R, =7

Rank of Correlation Matrices Ry, R,,, R, =7
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

(5) Power Spectral Density (a.k.a. Power Spectrum)

Power spectral density (p.s.d.) of a w.s.s. process {x[n]}

Px(w) 2 DTFT[n(K)]= Y n(k)e "
k=—o0
r(k) £ DTFT’l[PX(w)]:%/W Px (w)e** dw

The p.s.d. provides frequency domain description of the 2nd-order
moment of the process (may also be defined as a function of f: w = 27f)

The power spectrum in terms of ZT:
Px(z) = ZT[n(k)] = 220 _ oo (k)"

Physical meaning of p.s.d.: describes how the signal power of a random
process is distributed as a function of frequency.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Properties of Power Spectral Density

@ r (k) is conjugate symmetric: r (k) = ri(—k)
& Px(w) is real valued: Px(w) = Px(w); Px(z) = Px(1/z*)

@ For real-valued random process: ry(k) is real-valued and even
symmetric

= Px(w) is real and even symmetric, i.e.,
Px(w) = Px(—w); Px(z) = Px(z")

@ For w.s.s. process, Px(w) > 0 (nonnegative)

@ The power of a zero-mean w.s.s. random process is proportional to
the area under the p.s.d. curve over one period 2,
. 2
e, E[|x[n]] = (0) = 5= [;" Px(w)dw

Proof: note r,(0) = IDTFT of Px(w) at k=0
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

(6) Filtering a Random Process
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Filtering a Random Process
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

Filtering a Random Process

NS S xonj

PMQ&&& _— l ol \—=

$toble l;[‘l:ﬁt—t-e/

In terms of ZT:
Py(z) = Px(z)H(z)H*(1/z")
= Py(w) = Px(@)H(@)H" () = Px(w)| (@)

When h[n] is real, H*(z*) = H(z)
= Py(z) = Px(z)H(z)H(1/z)
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Interpretation of p.s.d.

If we choose H(z) to be an ideal bandpass filter with |ty l_>B -
very narrow bandwidth around any wg, and measure LL
the output power: 0 5 P

E [ly[nlP] = r,(0) = 5= [T Py(w)dw

T wo+B/2

= 2 [T Px(w) H(w)Pdw = 3 [ 52 Px(w) -1+ dw

= %Px(wO) . B Z 0

. Px(wo) = E [ly[n]?] - %, and Px(w) >0 Vw

i.e., p.s.d. is non-negative, and can be measured via power of {y[n]}.

% Px(w) can be viewed as a density function describing how the power
in x[n] varies with frequency. The above BPF operation also provides a
way to measure it by BPF.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Summary: Review of Discrete-Time Random Process

@ An “ensemble” of sequences, where each outcome of the sample
space corresponds to a discrete-time sequence

@ A general and complete way to characterize a random process:
through joint p.d.f.

© w.s.s process: can be characterized by 1st and 2nd moments
(mean, autocorrelation)

o These moments are ensemble averages; E [x[n]],
r(k) = E [x[n]x*[n — K]]
o Time average is easier to estimate (from just 1 observed sequence)

e Mean ergodicity and autocorrelation ergodicity:
correlation function should be asymptotically decay, i.e.,
uncorrelated between samples that are far apart.
= the time average over large number of samples converges to
the ensemble average in mean-square sense.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Characterization of w.s.s. Process through Correlation
Matrix and p.s.d.

@ Define a vector on signal samples (note the indexing order):
uln] = [u(n), u(n—1), o u(n— M+ 1)]7
© Take expectation on the outer product:

r(0) r() - - r(M—1)
R £ E [u[n]u"[n] = r(Tl) o r-(.l) . :
r(fM.Jrl) r(O)

© Correlation function of w.s.s. process is a one-variable
deterministic sequence = take DTFT(r[k]) to get p.s.d.
We can take DTFT on one sequence from the sample space of random
process; different outcomes of the process will give different DTFT
results; p.s.d. describes the statistical power distribution of the random
process in spectrum domain.
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Properties of Correlation Matrix and p.s.d.

© Properties of correlation matrix:

o Toeplitz (by w.s.s.)

o Hermitian (by conjugate symmetry of r[k]);

@ non-negative definite
Note: if we reversely order the sample vector, the corresponding
correlation matrix will be transposed. This is the convention used in
Hayes book (i.e. the sample is ordered from n — M + 1 to n), while
Haykin's book uses ordering of n, n—1, ... ton— M+ 1.

© Properties of p.s.d.:

o real-valued (by conjugate symmetry of correlation function);
o non-negative (by non-negative definiteness of R matrix)
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1 Discrete-time Stochastic Processes

Agpeanclie Dl Deriveitns 1.1 Basic Properties and Characterization

Filtering a Random Process

@ Each specific realization of the random process is just a
discrete-time signal that can be filtered in the way we've studied
in undergrad DSP.

@ The ensemble of the filtering output is a random process.
What can we say about the properties of this random process
given the input process and the filter?

© The results will help us further study such an important class of
random processes that are generated by filtering a noise process
by discrete-time linear filter with rational transfer function. Many
discrete-time random processes encountered in practice can be
well approximated by such a rational transfer function model:
ARMA, AR, MA (see §l1.1.2)
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