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Outline of Part-2

1. Discrete-time Stochastic Processes

2. Discrete Wiener Filtering

3. Linear Prediction

ENEE630 Lecture Part-2 2 / 40



1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Outline of Section 1

• Basic Properties and Characterization

1st and 2nd moment function; ergodicity

correlation matrix; power-spectrum density

• The Rational Transfer Function Model

ARMA, AR, MA processes

Wold Decomposition Theorem

ARMA, AR, and MA models and properties

asymptotic stationarity of AR process

Readings for §1.1: Haykin 4th Ed. 1.1-1.3, 1.12, 1.14;

see also Hayes 3.3, 3.4, and background reviews 2.2, 2.3, 3.2
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Stochastic Processes

To describe the time evolution of a statistical phenomenon
according to probabilistic laws.

Example random processes: speech signals, image, noise,

temperature and other spatial/temporal measurements, etc.

Discrete-time Stochastic Process {u[n]}
Focus on the stochastic process that is defined / observed at
discrete and uniformly spaced instants of time

View it as an ordered sequence of random variables that are
related in some statistical way:
{. . . u[n −M], . . . , u[n], u[n + 1], . . .}

A random process is not just a single function of time; it may
have an infinite number of different realizations
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Parametric Signal Modeling

A general way to completely characterize a random process is by
joint probability density functions for all possible subsets of the
r.v. in it:

Probability of {u[n1], u[n2], . . . , u[nk ]}

Question: How to use only a few parameters to describe a
process?

Determine a model and then the model parameters

⇒ This part of the course studies the signal modeling
(including models, applicable conditions, how to determine the
parameters, etc)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

(1) Partial Characterization by 1st and 2nd moments

It is often difficult to determine and efficiently describe the
joint p.d.f. for a general random process.

As a compromise, we consider partial characterization of the
process by specifying its 1st and 2nd moments.

Consider a stochastic time series {u[n]}, where u[n], u[n − 1], . . .
may be complex valued. We define the following functions:

mean-value function: m[n] = E [u[n]] , n ∈ Z
autocorrelation function: r(n, n − k) = E [u[n]u∗[n − k]]

autocovariance function:
c(n, n − k) = E [(u[n]−m[n])(u[n − k]−m[n − k])∗]

Without loss of generality, we often consider zero-men random process
E [u[n]] = 0 ∀n, since we can always subtract the mean in preprocessing.

Now the autocorrelation and autocovariance functions become identical.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Wide-Sense Stationary (w.s.s.)

Wide-Sense Stationarity

If ∀n, m[n] = m and r(n, n − k) = r(k) (or c(n, n − k) = c(k)),
then the sequence u[n] is said to be wide-sense stationary (w.s.s.),
or also called stationary to the second order.

The strict stationarity requires the entire statistical property
(characterized by joint probability density or mass function) to
be invariant to time shifts.

The partial characterization using 1st and 2nd moments offers
two important advantages:

1 reflect practical measurements;

2 well suited for linear operations of random processes
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

(2) Ensemble Average vs. Time Average

Statistical expectation E(·) as an ensemble average: take
average across (different realizations of) the process

Time-average: take average along the process.

This is what we can rather easily measure from one realization
of the random process.

Question: Are these two average the same?

Answer: No in general. (Examples/discussions from ENEE620.)

Consider two special cases of correlations between signal samples:

1 u[n], u[n − 1], · · · i.i.d.

2 u[n] = u[n − 1] = · · · (i.e. all samples are exact copies)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Mean Ergodicity

For a w.s.s. process, we may use the time average

m̂(N) = 1
N

∑N−1
n=0 u[n]

to estimate the mean m.

• m̂(N) is an unbiased estimator of the mean of the process.

∵ E [m̂(N)] = m ∀N.

• Question: How much does m̂(N) from one observation deviate from

the true mean?

Mean Ergodic

A w.s.s. process {u[n]} is mean ergodic in the mean square error
sense if limN→∞ E

[
|m − m̂(N)|2

]
= 0
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Mean Ergodicity

A w.s.s. process {u[n]} is mean ergodic in the mean square error

sense if limN→∞ E
[
|m − m̂(N)|2

]
= 0

Question: under what condition will this be satisfied?
(Details)

⇒ (nece.& suff.) limN→∞
1
N

∑N−1
`=−N+1(1− |`|N )c(`) = 0

Mean ergodicity suggests that c(`) is asymptotically decaying s.t.
{u[n]} is asymptotically uncorrelated.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Correlation Ergodicity

Similarly, let the autocorrelation estimator be

r̂(k,N) =
1

N

N−1∑
n=0

u[n]u∗[n − k]

The w.s.s. process {u[n]} is said to be correlation ergodic in the
MSE sense if the mean squared difference between r(k) and
r̂(k ,N) approaches zero as N →∞.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

(3) Correlation Matrix

Given an observation vector u[n] of a w.s.s. process, the
correlation matrix R is defined as R , E

[
u[n]uH [n]

]
where H denotes Hermitian transposition (i.e., conjugate transpose).

u[n] ,


u[n]
u[n − 1]
...
u[n −M + 1]

,

Each entry in R is

[R]i,j = E [u[n − i ]u∗[n − j ]] = r(j − i)

(0 ≤ i , j ≤ M − 1)

Thus R =


r(0) r(1) · · · · · · r(M − 1)

r(−1) r(0) r(1) · · ·
...

...
. . .

. . .
...

r(−M + 2) · · · · · · r(0) r(1)
r(−M + 1) · · · · · · · · · r(0)


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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Properties of R

1 R is Hermitian, i.e., RH = R

Proof (Details)

r(k) , E [u[n]u∗[n − k]] = (E [u[n − k]u∗[n]])∗ = [r(−k)]∗

Bring into the above R, we have RH = R

2 R is Toeplitz.

A matrix is said to be Toeplitz if all elements in the main diagonal are

identical, and the elements in any other diagonal parallel to the main

diagonal are identical.

R Toeplitz ⇔ the w.s.s. property.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Properties of R

3 R is non-negative definite , i.e., xHRx ≥ 0, ∀x
Proof (Details)

Recall R , E
[
u[n]uH [n]

]
. Now given ∀x (deterministic):

xHRx = E
[
xHu[n]uH [n]x

]
= E

(xHu[n])︸ ︷︷ ︸
|x | scalar

(xHu[n])∗

 =

E
[
|xHu[n]|2

]
≥ 0

• eigenvalues of a Hermitian matrix are real.
(similar relation in FT: real in one domain ∼ conjugate symmetric in

the other)

• eigenvalues of a non-negative definite matrix are non-negative.

Proof (Details)

choose x = R’s eigenvector v s.t. Rv = λv ,
vHRv = vHλv = λvHv = λ|v |2 ≥ 0 ⇒ λ ≥ 0
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Properties of R

4 uB [n] ,


u[n −M + 1]
...
u[n − 1]
u[n]

, i.e., reversely ordering u[n],

then the corresponding correlation matrix becomes

E
[
uB [n](uB [n])H

]
=


r(0) r(−1) · · · r(−M + 1)

r(1) r(0)
...

...
. . .

...
r(M − 1) · · · · · · r(0)

 = RT
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Properties of R

5 Recursive relations: correlation matrix for (M + 1)× 1 u[n]:
(Details)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

(4) Example-1: Complex Sinusoidal Signal

x [n] = A exp [j(2πf0n + φ)] where A and f0 are real constant, φ ∼
uniform distribution over [0, 2π) (i.e., random phase)

E [x [n]] =?

E [x [n]x∗[n − k]] =?

Is x [n] is w.s.s.?

ENEE630 Lecture Part-2 17 / 40



1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Example-2: Complex Sinusoidal Signal with Noise

Let y [n] = x [n] + w [n] where w [n] is white Gaussian noise
uncorrelated to x [n] , w [n] ∼ N(0, σ2)

Note: for white noise, E [w [n]w∗[n − k]] =

{
σ2 k = 0

0 o.w .

ry (k) = E [y [n]y∗[n − k]] =?

Ry =?

Rank of Correlation Matrices Rx , Rw , Ry =?
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

(5) Power Spectral Density (a.k.a. Power Spectrum)

Power spectral density (p.s.d.) of a w.s.s. process {x [n]}

PX (ω) , DTFT[rx(k)] =
∞∑

k=−∞

rx(k)e−jωk

rx(k) , DTFT−1[PX (ω)] =
1

2π

∫ π

−π
PX (ω)e jωkdω

The p.s.d. provides frequency domain description of the 2nd-order
moment of the process (may also be defined as a function of f : ω = 2πf )

The power spectrum in terms of ZT:

PX (z) = ZT[rx(k)] =
∑∞

k=−∞ rx(k)z−k

Physical meaning of p.s.d.: describes how the signal power of a random
process is distributed as a function of frequency.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Properties of Power Spectral Density

rx(k) is conjugate symmetric: rx(k) = r∗x (−k)

⇔ PX (ω) is real valued: PX (ω) = P∗X (ω); PX (z) = P∗X (1/z∗)

For real-valued random process: rx(k) is real-valued and even
symmetric

⇒ PX (ω) is real and even symmetric, i.e.,

PX (ω) = PX (−ω); PX (z) = P∗X (z∗)

For w.s.s. process, PX (ω) ≥ 0 (nonnegative)

The power of a zero-mean w.s.s. random process is proportional to
the area under the p.s.d. curve over one period 2π,

i.e., E
[
|x [n]|2

]
= rx(0) = 1

2π

∫ 2π

0
PX (ω)dω

Proof: note rx(0) = IDTFT of PX (ω) at k = 0
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

(6) Filtering a Random Process

(Details)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Filtering a Random Process
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Filtering a Random Process

In terms of ZT:
PY (z) = PX (z)H(z)H∗(1/z∗)

⇒ PY (ω) = PX (ω)H(ω)H∗(ω) = PX (ω)|H(ω)|2

When h[n] is real, H∗(z∗) = H(z)

⇒ PY (z) = PX (z)H(z)H(1/z)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Interpretation of p.s.d.

If we choose H(z) to be an ideal bandpass filter with
very narrow bandwidth around any ω0, and measure
the output power:

E
[
|y [n]|2

]
= ry (0) = 1

2π

∫ +π
−π PY (ω)dω

= 1
2π

∫ +π
−π PX (ω)|H(ω)|2dω = 1

2π

∫ ω0+B/2
ω0−B/2 PX (ω) · 1 · dω

.
= 1

2πPX (ω0) · B ≥ 0

∴ PX (ω0)
.

= E
[
|y [n]|2

]
· 2πB , and PX (ω) ≥ 0 ∀ω

i.e., p.s.d. is non-negative, and can be measured via power of {y [n]}.

> PX (ω) can be viewed as a density function describing how the power

in x [n] varies with frequency. The above BPF operation also provides a

way to measure it by BPF.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Summary: Review of Discrete-Time Random Process

1 An “ensemble” of sequences, where each outcome of the sample
space corresponds to a discrete-time sequence

2 A general and complete way to characterize a random process:
through joint p.d.f.

3 w.s.s process: can be characterized by 1st and 2nd moments
(mean, autocorrelation)

These moments are ensemble averages; E [x [n]],
r(k) = E [x [n]x∗[n − k]]

Time average is easier to estimate (from just 1 observed sequence)

Mean ergodicity and autocorrelation ergodicity:
correlation function should be asymptotically decay, i.e.,
uncorrelated between samples that are far apart.
⇒ the time average over large number of samples converges to
the ensemble average in mean-square sense.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Characterization of w.s.s. Process through Correlation
Matrix and p.s.d.

1 Define a vector on signal samples (note the indexing order):
u[n] = [u(n), u(n − 1), ..., u(n −M + 1)]T

2 Take expectation on the outer product:

R , E
[
u[n]uH [n]

]
=


r(0) r(1) · · · · · · r(M − 1)

r(−1) r(0) r(1) · · ·
...

...
. . .

. . .
...

r(−M + 1) · · · · · · · · · r(0)


3 Correlation function of w.s.s. process is a one-variable

deterministic sequence ⇒ take DTFT(r [k]) to get p.s.d.
We can take DTFT on one sequence from the sample space of random

process; different outcomes of the process will give different DTFT

results; p.s.d. describes the statistical power distribution of the random

process in spectrum domain.
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Properties of Correlation Matrix and p.s.d.

4 Properties of correlation matrix:

Toeplitz (by w.s.s.)
Hermitian (by conjugate symmetry of r [k]);
non-negative definite

Note: if we reversely order the sample vector, the corresponding

correlation matrix will be transposed. This is the convention used in

Hayes book (i.e. the sample is ordered from n −M + 1 to n), while

Haykin’s book uses ordering of n, n − 1, . . . to n −M + 1.

5 Properties of p.s.d.:

real-valued (by conjugate symmetry of correlation function);
non-negative (by non-negative definiteness of R matrix)
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1 Discrete-time Stochastic Processes
Appendix: Detailed Derivations

1.1 Basic Properties and Characterization

Filtering a Random Process

1 Each specific realization of the random process is just a
discrete-time signal that can be filtered in the way we’ve studied
in undergrad DSP.

2 The ensemble of the filtering output is a random process.
What can we say about the properties of this random process
given the input process and the filter?

3 The results will help us further study such an important class of
random processes that are generated by filtering a noise process
by discrete-time linear filter with rational transfer function. Many
discrete-time random processes encountered in practice can be
well approximated by such a rational transfer function model:
ARMA, AR, MA (see §II.1.2)
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